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Introduction
Adversarial machine learning is an area of modern machine learning whose
main goal is to study and develop methods for the design of learning models
that are robust to adversarial perturbations of data. It became a prominent
research field in machine learning less than a decade ago, not long after neural
networks became the state of the art technology for tackling image processing
and natural language processing tasks, when it was noticed that neural network
models, as well as other learning models, although highly effective at making
accurate predictions on clean data, were quite sensitive to adversarial attacks.
This mini-course seeks an exploration of the mathematical underpinnings of
this active and vibrant field. We will be particularly interested in exploring it
from analytic and geometric perspectives and discussing connections with topics
such as regularization theory, game theory, optimal transport, geometry, and
distributionally robust optimization. The mini-course aims to present the topic
of adversarial machine learning within the bigger objective of designing safe,
secure, and trustworthy AI models.
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1 Lecture 1
Scribes: Rachel Morris and Kevin Ren

Adversarial Learning/Training Problem:

inf
f∈F

E(x,y)∼µ

[
sup

x̃∈Bε(x)

ℓ(f(x̃), y)

]
= inf
f∈F

∫
sup

x̃∈Bε(x)

ℓ(f(x̃), y) dµ(x, y) (ATP)

• (x, y) ∈ X × Y; X = Rd, Y =

{
R regression
{1, . . . , k} classification

• µ ∈ P(X × Y) is Borel probability measure, µ not necessarily empirical

• f : X → Y or f : X → P(Y); in the case that Y = {1, . . . , k} then
f(x) = (f1(x), . . . , fk(x)) (f is a probability vector)

• F is a family of such functions f ; e.g. linear functions, neural nets, all
Borel functions

• Note that enlarging F makes the inf in (ATP) smaller

• ℓ(·, ·) is a loss function; e.g. 0-1 loss ℓ(f(x), y) = 1− fy(x), cross entropy
loss ℓ(f(x), y) = − log(fy(x))

• We need to check integrability in (ATP)...

• Bε(x): should it be open or closed? If ℓ and f are continuous, then
it doesn’t make a difference. If f is Borel and ℓ is continuous, then
(x, y) 7→ supx̃∈Bε(x) ℓ(f(x̃), y) is Borel when Bε(x) is open (see exercises;
not necessarily true if Bε(x) is closed).

• Universal σ-algebra of X × Y:

U =
⋂

γ∈P(X×Y)

Σγ

where Σγ = completion of Borel σ-algebra with γ-null sets (sets with
γ-measure zero). Then we can write (ATP) as

inf
f∈F

∫
sup

x̃∈Bε(x)

ℓ(f(x̃), y) dµ(x, y) (ATP*)

where µ is the extension of µ to U .

• Remark. For all but at most countably many ε > 0, the two optimzation
problems (ATP), (ATP*) are equivalent. (See exercises)
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1. Distributionally Robust Optimzation version of AT (DRO)

inf
f∈F

sup
µ̃∈ρ(X×Y)

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)]− C(µ, µ̃) (DRO)

where C(µ, µ̃) is a positive function to penalize the attacker for changing
the underlying distribution. A particular but interesting subcase:

inf
f∈F

sup
µ̃ s.t.D(µ̃,µ)≤ε

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)] (DRO2)

Here, D is a “distance function” between distributions. DRO generalizes
(ATP). It can be used to find lower bounds for (ATP).

Structure of C(µ, µ̃): an “optimal transport metric”

C(µ, µ̃) = inf
π∈Γ(µ,µ̃)

∫
Cz(z, z̃) dπ(z, z̃) (OTM)

where Γ(µ, µ̃) = {π ∈ ρ((X × Y)× (X ,Y)) : π1 = µ, π2 = µ̃}, i.e. Γ is the
set of “couplings" or “transport plans" between µ and µ̃. Notice that the
constraints and objective function are linear. This problem is explicitly
a min-max game. Lots of numerical algorithms for computing optimal
transport between two distributions in last decade!

To see the connection with ATP (i.e. how DRO is a larger class of problems
that contains ATP):

Cz((x, y), (x̃, ỹ)) =

{
0 if d(x, x̃) ≤ ε and if y = ỹ

∞ otherwise

In other words: the adversary is free to change data points in X by distance
≤ ε, but infinite cost to change values in Y

2. Probabilistically Robust Learning - interpolate between best classification
on clean data and robustness of the ATP

inf
f∈F

E(x,y)∼µ [max {ℓ(f(x), y), gp,ε(ℓ(·, y))}] (PRL)

where gp,ε is some softer sup operation. You can tune the parameter p to
be closer to ATP or closer to best accuracy on clean data. This reveals a
further connection between AT and regularization

3. Regularization:
inf
f∈F

E(x,y)∼µ[ℓ(f(x), y)] +Rε,p(f)

Rε,p(f) is the regularization term.

Smoother decision boundaries are more robust to small perturbations
(compare a smooth circular boundary vs. a rough squiggly boundary)
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Outline for remaining days:

• Tuesday, Wednesday:

– (DRO) Family

– How to find universal lower bounds

– Highlights connections with Optimal Transport

• Thursday, Friday:

– (PRL) model

– (ATP) as a perimeter minimization problem

– Highlights some tools from calculus of variation

1.1 Further Remarks and References
1. The fact that x 7→ supx̃∈Bε(x)

g(x̃) may not be Borel measurable if we
only assume Borel measurability of g can be found in Lemma 4.1. in the
paper The Many Faces of Adversarial Risk, by Muni Sreenivas Pydi and
Varun Jog (whose ArXiv version you can find here https://arxiv.org/
pdf/2201.08956.pdf). In that same paper, in Lemma 4.2 and Lemma 4.4
the authors discuss the universal measurability of this function.

2. Related to the second question in the first problem set, you can take a
look at Theorem 8 in https://arxiv.org/pdf/2006.09568.pdf, where
some results on estimating the (true) Bayes adversarial risk using finite
data are discussed.

1.2 Exercises
1. (The Bayes classifier). In the classification setting Y = {1, . . . , k}, let

F = Fall be the set of all Borel (weak or probabilistic) classifiers, i.e., all
Borel functions f : X → P(Y ). In other words, for every x ∈ X f(x) is
a probability vector in Rk, each of whose coordinates represents the level
of confidence in classifying x as that coordinate. Consider the (extended)
0− 1 loss function:

ℓ(f(x), y) := 1− fy(x).

Prove that
inf
f∈F

E(x,y)∼µ[ℓ(f(x), y)]

admits solutions f∗ such that for every x the vector f∗(x) has a 1 in
one coordinate and zeros in all other coordinates. Moreover, provide an
expression for one such minimizer in terms of the distribution µ.
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2. (On overfitting). Suppose that (x1, y1), . . . , (xn, yn) are i.i.d. samples from
a distribution µ. Let µn be the empirical measure associated to these
samples. Let Fall be the set of all Borel measurable functions from X into
Y.

Explain why solving the problem

inf
f∈Fall

E(x,y)∼µn
[ℓ(f(x), y)]

is in general useless for estimating solutions to the problem

inf
f∈Fall

E(x,y)∼µ[ℓ(f(x), y)].

Does your answer change if we replace RM with AT for some value of
adversarial budget ε? Discuss.

3. Let g be a Borel measurable function. Show that the function

x ∈ Rd 7→ sup
x̃∈Bε(x)

g(x̃)

is Borel measurable. In the above, Bε(x) is an open ball.

4. (Equivalence between open and closed ball models) Let µ ∈ P(X ×Y) and
let F be a family of regression functions/classifiers. Consider the following
two problems:

inf
f∈F

∫
sup

x̃∈Bε(x)

{ℓ(f(x̃), y)}dµ(x, y)

and
inf
f∈F

∫
sup

x̃∈Bε(x)

{ℓ(f(x̃), y)}dµ(x, y),

where Bε(x) and Bε(x) are the open and closed balls of radius ε centered
around x, and µ is the extension of µ to the universal σ-algebra (see
definition below).

Prove that for all but at most countably many values of ε the above
problems satisfy:

(a) The two infima are equal.

(b) If f∗ ∈ F is a solution to the closed ball problem, then f∗ is also a
solution to the open ball problem.

Definition: For every γ ∈ P(X × Y) let Σγ be the γ-completion of the
Borel σ-algebra over X × Y . That is, Σγ is the σ-algebra generated by all
Borel sets and all γ-null sets. The universal σ-algebra U over X × Y is
defined as

U :=
⋂

γ∈P(X×Y)

Σγ .
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Notice that the Borel σ-algebra is contained in U . Thus, any µ ∈ P(X ×Y)
can be extended to a measure µ over U . As an extension, we should have∫

h(x)dµ(x) =

∫
h(x)dµ(x)

for every Borel h.

5. (Regularization and AT Part 1) Consider the problem

inf
f∈F

E(x,y)∼µ[ sup
x̃∈Bε(x)

|f(x̃)− y|],

where Y = R, Bε(·) is the ball associated to some norm ∥·∥ in Rd, and F
is the family of linear functions of the form:

f(·) = ⟨·, θ⟩, θ ∈ Rd.

Prove that the above (AT) is equivalent to

inf
θ∈Rd

E(x,y)∼µ[|⟨x, θ⟩ − y|] + ε||θ||∗,

where ∥·∥∗ is ∥·∥’s dual norm.
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2 Lecture 2
Scribes: Kevin Ren

2.0.1 Optimal transport revisited from last time

Discrete setting: suppose we have sources x1, · · · , xn with weights p1, p2, · · · , pn,
mapping into sinks y1, · · · , ym with weights q1, · · · , qm, with

∑
i pi =

∑
j qj = 1.

Then optimal transport becomes: over all matrices π ∈ Rn×m with non-negative
entries such that

∑
j πij = pi for all j and

∑
i πij = qj for all i, what is the

minimum cost
∑
i,j Cijπij , where Cij is the cost of transporting i to j?

Continuous setting:

inf
π∈Γ(µ,µ̃)

∫
CZ(z, z̃) dπ(z, z̃)

Γ(µ, µ̃) = {π ∈ ρ(Z × Z) : P1#π = µ, P2#π = µ̃}
Pi#π is the i-th marginal of π.
Multi-marginal optimal transport will generalize the two-marginal optimal

transport considered above. Uses higher-order tensors
Discrete setting: πi1···id is the amount of mass that is assigned at xi1xi2 · · ·xid .
Given marginals

∑
i1···ik−1ik+1···id πi1···id = pkik for all k, i1, · · · , id, what is

minπ×Rn1×···×nd

∑
i1,··· ,id Ci1···idπi1···id?

Continuous setting: Γ(µ1, · · · , µd) = {π ∈ ρ(Z×d) : Pℓ#π = µd}

2.0.2 Upper and lower bounds on AT and DRO (Universal lower
bounds)

Upper bounds: F
Suppose you can find C(f, x, y) (the certificate) s.t.

E(x,y)∼µ[ sup
x̃∈Bε(x)

ℓ(f(x), y)] ≤ E(x,y)∼µ[ sup
x̃∈Bε(x)

C(f, x, y)]

for all f ∈ F . We can try to solve the surrogate problem

inf
f∈F

E(x,y)∼µC(f, x, y),

which will be an upper bound for the adversarial risk. Moreover, for the solution
f∗s of the surrogate (hopefully a much easier problem) we can “certify" how large
is its adversarial risk: it is no larger than E(x,y)∼µ[C(f

∗
s , x, y)].

How to find certificates: supx̃∈Bε(x) ℓ(f(x̃), y). Treat ℓ(f(x̃), y) as a function
g(x̃) of x̃. Then by fundamental theorem of calcuus one can get:

sup
x̃∈Bε(x)

g(x̃) ≤ g(x) + ε sup
x̃∈Bε(x)

∥∇g(x̃)∥∗.

Student question: what value of ε to choose? Random networks?
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A: If one has enough computational power, then try many different values
of ε. But maybe a better approach is: we have a tradeoff between robustness
and accuracy. For a given accuracy, tune ε to get the given accuracy and best
possible robustness. For random networks, see references.

What about universal lower bounds? Notice that, regardless of F we always
have:

inf
f∈F

sup
µ̃∈ρ(X×Y)

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)]−C(µ, µ̃) ≥ inf
f∈Fall

sup
µ̃∈ρ(X×Y)

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)]−C(µ, µ̃)

The larger the class F , the closer these two quantities are. The second quantity
does not suffer from overfitting and hence has an ok answer (see exercise from
last time!) Indeed, the lecturer has a paper on comparing these two quantities.

2.0.3 Classification setting

Y = {1, · · · ,K}
f : X = Rd → ρ(Y )
0− 1 loss: ℓ(p, y) = 1− fy(x)
Open question for tomorrow: if ℓ(p, y) = − log fy(x) (cross-entropy loss),

what should be the correct answer?

C(µ, µ̃) := inf
π∈Γ(µ,µ̃)

∫
cZ(z, z̃) dπ(z, z̃), cZ =

{
c(x, x̃) if y = ỹ,

∞ otherwise.

The adversary, to confuse the learner, would like to merge points with different
colors if possible (the more different colors merged, the better for teh adversary).
Thus, the adversary has a tradeoff between cost and reward. This tradeoff is
interesting and will be explored soon.

Question: why is C(µ, µ̃) lower semi-continuous?
A: to guarantee that the optimization problem has a minimizer

2.0.4 Back to universal lower bounds

Claim:

inf
f∈Fall

sup
µ̃∈ρ(X×Y)

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)]−C(µ, µ̃) = sup
µ̃∈ρ(X×Y)

inf
f∈Fall

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)]−C(µ, µ̃)

This needs justification, but we will do it a posteriori.
Assuming claim (and using the notation µi(·) := µ(· × {i}), C(µi, µ̃i) =

infπ∈Γ(µi,µ̃i)

∫
c(x, x̃) dπ(x, x̃)), we can decouple by color:

inf
f∈Fall

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)]− C(µ, µ̃) =

K∑
i=1

∫
ℓ(f(x̃), i) dµ̃i(x̃)−

K∑
i=1

C(µi, µ̃i).
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Figure 1: Illustration of generalized Wasserstein barycenter problem. The goal is
to achieve the largest overlap (smallest λ(X )) between the classes at the cheapest
cost.

We wish to minimize this over f ∈ Fall. Indeed, consider pointwise for all x̃. The
best strategy (see Exercise 1 from last session) is to select pi = 1 when dµ̃i

dµ̃ (x̃) is
largest. (Here, we abuse notation and let µ̃ =

∑K
i=1 µ̃i.) Thus,

sup
µ̃∈ρ(X×Y)

inf
f∈Fall

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)]−C(µ, µ̃) = sup
µ̃1,··· ,µ̃K

1−
∫

max
i=1,··· ,K

dµ̃i(x̃)

dµ̃
(x̃)dµ̃(x̃)−

K∑
i=1

C(µi, µ̃i).

The max looks scary, but we can give it a name. Rewrite as

sup
µ̃1,··· ,µ̃K

1− inf
λ s.t. λ≥µ̃i∀i

λ(X )−
K∑
i=1

C(µi, µ̃i) = 1− inf
λ,µ̃1,··· ,µ̃K s.t. λ≥µ̃i∀i

{λ(X )+

K∑
i=1

C(µi, µ̃i)}.

From this last expression, we see our previous heuristic in quantitative form: the
adversary wishes to minimize the cost while making the new measures µ̃i overlap
as much as possible. This is the generalized Wasserstein barycenter prob-
lem. Compare with the classical Wasserstein problem: given γ1(X ), · · · , γk(X ),
find infγ

∑K
i=1 C(γi, γ). See exercise 3 today.

2.1 Further Remarks and References
1. The notion of generalized Wasserstein barycenter problem and its con-

nection to AT were introduced in the paper The multimarginal optimal
transport formulation of adversarial multiclass classification, which you
can access here https://www.jmlr.org/papers/v24/22-0698.html.

2. One specific case where you can find useful upper bounds for AT is presented
in the paper Certified defenses against adversarial examples, which you can
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find here https://arxiv.org/pdf/1801.09344.pdf. There, the idea of
constructing certificates for 1-hidden layer neural networks binary classifiers
is discussed.

3. The connection between DRO and Lasso models discussed in problems 1
and 2 below appears in the work Robust Wasserstein Profile Inference and
Applications to Machine Learning, whose ArXiv version you can find here
https://arxiv.org/pdf/1610.05627.pdf.

4. The paper Square-Root Lasso: Pivotal Recovery of Sparse Signals via
Conic Programming introduced the squared-root Lasso model (see https:
//arxiv.org/abs/1009.5689). In contrast to the standard Lasso model,
squared-root Lasso is pivotal, a concept that is discussed in that paper and
that has important consequences for the practical estimation of parameters
from finite data.

2.2 Exercises
1. (Regularization and AT Part 2) Consider the DRO problem

min
f∈F

sup
µ̃ s.t. W 2

2 (µ,µ̃)≤ε
E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)].

where Y = R, F is the set of all linear functions of the form f(·) = ⟨·, a⟩+ b
( a ∈ Rd and b ∈ R), and W 2

2 is the (squared) 2-OT distance:

W 2
2 (µ, µ̃) = inf

π∈Γ(µ,µ̃)

∫
||z − z̃||2dπ(z, z̃)

for some norm ∥·∥ in Rd+1.

Prove that the above (DRO) is equivalent (same value and same minimizer)
to the problem

min
a∈Rd,b∈R

(√
E(x,y)∼µ[(⟨a, x⟩+ b− y)2] +

√
ε∥(a,−1)∥∗

)2

,

where ∥·∥∗ is the dual norm of ∥·∥. In particular, (DRO) has the same
minimizers as

min
a∈Rd,b∈R

√
E(x,y)∼µ[(⟨a, x⟩+ b− y)2] +

√
ε∥(a,−1)∥∗.

2. (DRO and squared-root Lasso). Consider now a norm ∥·∥ in Rd and let
∥·∥∗ be its dual norm. Use the above problem to deduce that the DRO
model

min
f∈F

sup
µ̃ s.t. C(µ,µ̃)≤ε

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)],
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with F as in problem 1 and

C(µ, µ̃) = inf
π∈Γ(µ,µ̃)

∫
c(z, z̃)dπ(z, z̃)

c(z, z̃) :=

{
||x− x̃||2 if y = ỹ

∞ otherwise,

has the same minimizers as the regularization problem

min
a∈Rd,b∈R

√
E(x,y)∼µ[(⟨a, x⟩+ b− y)2] +

√
ε∥a∥∗.

Note: When ∥·∥ is chosen to be the ℓ∞ norm in Rd, then ∥·∥∗ is the ℓ1
norm and the resulting regularization problem is the so called squared-root
Lasso model, a popular model in statistics.

3. Consider the generalized barycenter problem:

min
λ,µ̃1,...,µ̃K

{
λ(X ) + β

∑
i∈Y

C(µi, µ̃i) : λ ⪰ µ̃i for all i ∈ Y

}
,

for a cost function c that, for simplicity, is continuous. In the above, β is a
positive parameter. Suppose, in addition, that all classes are balanced, so
that

µ1(X ) = · · · = µK(X ).

Prove that if {βn}n∈N is a sequence converging to zero, and if (λ∗,n, µ̃∗,n
1 , . . . , µ̃∗,n

K )
is a solution to the generalized barycenter problem for β = βn, then, up
to subsequence, all of λ∗,n, µ̃∗,n

1 , . . . , µ̃∗,n
K converge weakly (narrowly) to-

ward the same positive measure λ, which is a solution to the standard
Wasserstein barycenter problem:

inf
λ

K∑
i=1

C(µi, λ).
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3 Lecture 3
Scribes: Rachel Morris and Liane Xu

Recall the universal (DRO):

inf
f∈Fall

sup
µ̃∈ρ(X×Y)

E(x̃,ỹ)∼µ̃[ℓ(f(x̃), ỹ)]− C(µ, µ̃) (DROuniv)

where C(·, ·) = infπ∈Γ(µ,µ̃)

∫
Cz(z, z̃) dπ(z, z̃) where Cz(z, z̃) =

{
c(x, x̃) if y = ỹ

∞ else
We are most interested in the classification problem. For classification,

Y = {1, · · · ,K}, where K is the number of classes (e.g. 10 or 100). Our
f : X → ρ(Y ), a probability vector whose i-th entry is the confidence assigned
to class i.

Recall from last time that we reduced the universal problem (DROuniv) to
the following generalized Wasserstein barycenter problem:

inf
λ,µ̃1,...,µ̃k

λ(X ) +

K∑
i=1

C(µi, µ̃i)

s..t. λ ≥ µ̃i for all i = 1, . . . ,K. This has inputs µ1, . . . , µk which are measures
that represent the data distribution of the colors and cost function C. Intuitively,
the cost function c models the adversary/what it can do. The generalized
Wasserstein barycenter problem is related to the standard Wasserstein barycenter
problem:

inf
γ

K∑
i=1

C(γi, γ)

where γ1(X) = ... = γk(X). In the standard problem, we think of γ as the
barycenter whereas in the generalized problem we think of λ as the generalized
barycenter.

As an analogue to the barycenter in Rd, observe that the barycenter of some
points x1, ..., xk ∈ Rd is

1

k

∑
i

xi = arg min
x∈Rd

∑
i

|X −Xi|2

.
There are algorithms already for the standard Wasserstein barycenter problem.

We can do something similar for the generalized Wasserstein barycenter problem.
First, we will look at the standard Wasserstein barycenter problem.

Theorem 1 (Agick-Carlier ’10). Let c(x1, ..., xk) := infx
∑k
i=1 c(xi, x). The

problem

inf
γ

k∑
i=1

C(γi, γ)
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is equivalent to the following multi-marginal optimal transport (MOT) problem

inf
π∈Γ(γ1,...,γk)

∫
C(x1, . . . , xk) dπ(x1, . . . , xk).

(Note that each xi correspond to the γi)

We will now discuss algorithms for MOT, which will solve the standard
Wasserstein barycenter problem. We want to follow a similar approach for the
generalized Wasserstein barycenter problem as well: find a MOT analogue and
then solve the MOT-analogue problem.

We will show this in the case where there are two measures (K = 2). The
generalization follows.

Sinkhorn Algorithm for OT:
To solve:

inf
π∈Γ(µ,ν)

∫
C(x, y) dπ(x, y)

where µ, ν ∈ P(X ) and x, y ∈ X = Rd.
Let x1, . . . xn be the support points of µ and µ1, . . . , µi are the masses at

each of the xi.
Let y1, ..., ym be the support points for ν, ν1, ..., νm the masses at each yj .
We are now just solving the linear program

inf
π

∑
i,j

cijπij + η
∑
i,j

(log πij − 1)πij

where cij = C(xi, yj) such that
∑n
i=1 πij = νj ,∀j = 1, . . . ,m and

∑m
j=1 πij =

µi,∀i = 1, . . . , n (conservation of mass) and πij ≥ 0.
The linear problem infπ

∑
i,j cijπij is not strongly convex, so we add on a sec-

ond term (seen above) that is the “entropy regularization" term, η
∑
i,j(log πij −

1)πij . Now, the problem is strongly convex. Notice that in the strongly convex
version, we no longer need the constraint πij ≥ 0. We can control η (the original
problem is when η is 0, but this method works better when η ̸= 0). Some of
the best results come from allowing η to be adjustable depending on how close
we want to be to the solution of the original problem. There are other forms of
regularization too, but this one is nice so we’ll focus on it.

Trick: Look at the dual!
Let’s denote the collection of Lagrange multipliers by ϕ = (ϕ1, ..., ϕn) (La-

grange multipliers corresponding to µi) and ψ = (ψ1, ..., ψm) (Lagrange multipli-
ers corresponding to νj).

L(π;ϕ, ψ) =
∑
i,j

cijπij+η
∑
i,j

(log πij−1)πij+

n∑
i=1

ϕi(µi−
∑
j

πij)+

m∑
j=1

ψj(νj−
∑
i

πij)

The dual objective is

g(ϕ, ψ) = inf
π

L(π, ϕ, ψ) =
∑
i

ϕiµi +
∑
j

ψjνj − η
∑
i,j

exp

(
1

n
(ϕi + ψj − Cij)

)

13



where the second equality comes from differentiating and setting to 0. Then, the
dual problem is,

max
ϕ,ψ

∑
i

ϕiµi +
∑
j

ψjνj − η
∑
i,j

exp

(
1

η
(ϕi + ψj − Cij)

)
.

For a given (ϕ, ψ), we can construct an associated π via

π(ϕ, ψ)ij = exp

(
1

η
(ϕi + ψj − cij

)
.

This is the optimal π that attains the minimum of infπ L(π, ϕ, ψ). Moreover,
if the above is feasible for the primal problem (feasible, i.e. it satisfies the
constraints), then its is a solution to the primal problem. This comes from the
KKT conditions.

Here’s the idea for Sinkhorn’s algorithm. Suppose at some timepoint t we
have a guess (ϕt, ψt) of ϕ, ψ. To update our guesses, we first maximize

ψt+1 = argmax
ψ

∑
i

ϕtiµi +
∑
j

ψjνj + η
∑

exp(
1

η
(ϕti + ψ − Cij))

Fix one variable, (above ϕ) and then optimize over the other variable to determine
ψt+1. Then, you can do the other variable by maximizing over ϕ and setting
ψ = ψt+1 in the equation above.

By differentiating our objective functions and setting them to 0, we obtain
the Sinkhorn iterations:

• At t = 0, set ϕ0 = 0, ψ0 = 0

• Update ϕ: ϕt+1 = ϕt+η log(µ)−η log(P1#ϕ(ϕ
t, ψt)) where P1#ϕ(ϕ

t, ψt) =∑
j π(ϕ

t, ψt)ij

• Update ψ: ψt+1 = ψt + η log(ν)− η log(P2#π(ϕ
t+1, ψt)

• t = t+ 1

• Until: ||µ − P1#π(ϕ
t, ψt)||1 + ||ν − P2#π(ϕ

t, ψt)||1 ≤ δ where δ is some
predefined tolerance

This algorithm has almost linear convergence. The cost for each iterate is about
O(n2).

The stopping criteria intuitively says that ϕt, ψt are close to being feasible
for the primal, and recall that KKT says that if they are feasible for the primal,
then they are the solution to the primal. Therefore, this is an intuitive stopping
criteria.

Notice that Sinkhorn is unstable for small η. Also potentially if µ or ν is
close to zero. See the book Computational Optimal Transport by Peyre and
Cuturi for more details.
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Figure 2: Illustration of splitting of masses.

Generalization to MLT Sinkhorn:

k∑
ℓ=i

∑
iℓ

ϕℓiℓµ
ℓ
iℓ
− η

∑
i1,...,ik

exp

(
1

η
(ϕ1i1 + · · ·+ ϕkik − ci1i1···ik

)

Initialize ϕl,0 ≡ 0 for all l. Then, find greedy coordinate (i.e. update the
worst coordinate)

I = arg max
ℓ=1,...,k

{
DKL(µ

ℓ||Pℓ#π(ϕ1,t, . . . , ϕk,t))
}

where DKL is the KL divergence.
We can view this as a version of gradient ascent, in a coordinate-wise fashion.
What do we do for the generalized barycenter problem?
A is a subset of {1, . . . , k} s.t. i ∈ A. Recall our color example with colors

red, blue and green. We will consider measures µi,A where color i can interact
with the colors in A. For example, µred, {blue, red} are the red points that overlap
with some blue points but not green points (pink points in Figure 2).

We can rewrite the problem as

inf
{λA,µ1,A,...,µk,A}A∈[k]

∑
A

λA(X) +
∑
i∈A

C(µi,A, λA)

This becomes the analog of MOT,

inf
{πA}A

∑
A

∫
(1 + CA(xA)) dπA(xA) s.t.

∑
A s.t. i∈A

Pi#πA = µi, ∀i = 1, . . . , k

where CA(xA) = inf x̄
∑
i∈A c(xi, x̄) and xA = (Xi)i∈A.

In practice, we don’t have to consider all A ⊆ [k]; we can truncate and only
consider, e.g., A consisting of at most 4 colors/classes.
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3.1 Further Remarks and References
1. The following are important references that study the computational

complexity of Sinkhorn iterations for OT (or MOT) problems:

• Near-linear time approximation algorithms for optimal transport via
Sinkhorn iteration (https://arxiv.org/abs/1705.09634), which
analyzes the computational complexity of Sinkhorn iterations, not
only to approximate the entropy regularized OT problem, but also to
approximate the original OT problem.

• On the Complexity of Approximating Multimarginal Optimal Transport
(https://arxiv.org/abs/1910.00152), which analyzes the multi-
marginal case.

2. The analog of the MOT problem for the adversarial training problem can
be found in Equation (21) in the paper The multimarginal optimal transport
formulation of adversarial multiclass classification, which you can access
here https://www.jmlr.org/papers/v24/22-0698.html. Based on this
reformulation for the DRO problem, the paper An Optimal Transport
Approach for Computing Adversarial Training Lower Bounds in Multiclass
Classification (https://arxiv.org/abs/2401.09191) adapts Sinkhorn
iterations (after introducing an appropriate entropic regularization) to
obtain a scalable algorithm for computing adversarial training lower bounds.

3.2 Exercises
1. (Lower bounds for some specific models) Consider the (AT) problem:

inf
f∈F

E(x,y)∼µ[ sup
x̃∈Bε(x)

ℓ(f(x̃), y)]

for F the set of liner functions of the form:

f(x) = ⟨a, x⟩+ b

for some a ∈ Rd and b ∈ R. Suppose, in addition, that the function ℓ(·, y)
is convex (and differentiable) regardless of the value of the admissible y in
the learning problem. Prove that the quantity

inf
f∈F

E(x,y)∼µ[ℓ(f(x), y) + ε∥∇xℓ(f(x), y)∥∗]

is a lower bound for (AT) as above. Here, ∥·∥∗ is the dual to the norm
that determines the ball Bε(x).

2. (Open problem) The discussion on universal lower bounds for DRO prob-
lems in the multiclass classification setting assumed that the loss function
was the 0−1 loss. How would you extend this discussion if the loss function

16

https://arxiv.org/abs/1705.09634
https://arxiv.org/abs/1910.00152
https://www.jmlr.org/papers/v24/22-0698.html
https://arxiv.org/abs/2401.09191


was more general? For example, what would happen if the loss function
took the form:

ℓ(f(x), y) = − log(fy(x)),

i.e., it was the cross entropy? Is it possible to come up with an efficient
algorithm that computes the universal lower bound for this type of loss
function?
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4 Lecture 4
Scribes: Rachel Morris and Kevin Ren

4.0.1 Existence and regularity of solutions to (ATP)

Setting: Binary Classification

• Labels: Y = {0, 1}

• Classifiers: f : X → Y = 1A, A ∈ B(X ), indicators of sets

The question of regularity boils down to the regularity of the decision bound-
ary. Rewrite (ATP) for the decision problem as:

inf
A∈B(X)

E(x,y)∼µ[ sup
x̃∈Bε(x)

|1A(x̃)− y|] (ATPdecision)

We define µ0, µ1 as µ0(·) = µ(· × {0} and µ1(·) = µ(· × {1}. Now, we
reformulate ATPdecision by disintegrating the measure µ:

E(x,y)∼µ[ sup
x̃∈Bε(x)

|1A(x̃)− y|] =
∫

sup
x̃∈Bε(x)

|1A(x̃)− y| dµ(x, y)

=

∫
sup

x̃∈Bε(x)

|1A(x̃)− 0| dµ0(x) +

∫
sup

x̃∈Bε(x)

|1A(x̃)− 1| dµ1(x)

=

∫
Ac

dµ1(x) +

∫
A

dµ1(x)

+

∫
sup

x̃∈Bε(x)

1A(x̃)− 1A(x) dµ0(x) +

∫
1A(x)− inf

x̃∈Bε(x)
1A(x̃) dµ1(x)

Above, the first two integrals represent the misclassification due to the choice
in classifier. Then, the second two terms represent the misclassificaiton due to
adversarial perturbation (i.e. they are correctly classified but they are too close to
the decision boundary). Then, ATPdecision admits the following representation:

Rε(A) = Risk(1A) + εPerε(A)

Alternatively, adversarial risk:

Rε(A) =

∫
Ac

dµ1(x)+

∫
A

dµ1(x)+

∫
sup

x̃∈Bε(x)

1A(x̃)−1A(x) dµ0(x)+

∫
1A(x)− inf

x̃∈Bε(x)
1A(x̃) dµ1(x)

Reinterpret as the following: the set of x such that Bε(x) intersects both A
and Ac. (The ε-neighborhood of the “boundary”.)
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4.0.2 Tools from calculus of variations

Q: Does there exist a solution to ATPdecision?
There are two approaches: (1) the direct method of calculus of variations

and (2) relaxation.
For our problem, the direct method doesn’t work. Instead, we construct a

relaxed problem which does have a solution (via the direct method), and use the
solution to the relaxed problem to construct a solution to the original problem.

Direct Method of Calculus of Variations: Topological space (H, τ), trying to
find solutions to infh∈H ψ(h). We will assume

1. Sequential Lower Semi-continuity (l.s.c.): For a sequence {hn}n∈N s.t.
hn →τ h, then h ≤ lim infn→∞ ψ(hn).

2. infh∈H ψ(h) > −∞

3. Sequential Precompactness of level sets: If {hn}n∈N is a sequence with
supn∈N ψ(hn) <∞, then there exists a convergent (in topology τ) subse-
quence of {hn}n∈N with

∃{nk}k s.t. hnk
→τ h for some h.

One needs a “fine line” between compactness and lower semi-continuity. If
your topology is too fine, then it isn’t compact; if it is too coarse, then we don’t
have lower semi-continuity.

If the above (1) - (3) hold, then there exists h∗ solution to the problem.

Proof. Let {hn}n be a minimizing sequence for the problem. By the definition
of infimum,

lim
n→∞

ψ(hn) = inf
h∈H

ψ(h)

Clearly supn∈N ψ(hn) < ∞, so by compactness (3), we pass to a subsequence
(which we keep denoting {hn}n) such that hn → h for some h. By lower
semi-continuity (1), we have

ψ(h) ≤ lim inf
n→∞

ψ(hn) = inf
h∈H

ψ(h).

Can we apply this direct method argument to ATPdecision? Implicit is that
we have a defined topology. What is the topology on B(X ), and can we expect
l.s.c. or compactness properties? We will do some relaxations in order to get to
a setting where we can apply the direct method.

Modified Adversarial Risk:

R̃ε(A) =

∫
Ac

dµ1(x) +

∫
A

dµ1(x)

+

∫
ν-ess supx̃∈Bε(x)1A(x̃)− 1A(x) dµ0(x) +

∫
1A(x)− ν-ess infx̃∈Bε(x)1A(x̃) dµ1(x)
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where ν is a positive finite Borel measure to be chosen shortly and

ν-ess supx̃∈Bε(x)g(x̃) := inf{p : ν({x̃ s.t. x̃ ∈ Bε(x) and g(x̃) > p}) = 0}

We want R̃ to be defined on equivalence classes of ν.
Assumptions on ν:

• µ0 + µ1 is absolutely continuous (a.c.) wrt ν.

Observation: The relaxed problem is defined on a subset of L∞(X , ν).
Let T be the weak* topology in L∞(X, ν).

Definition 1. {gn}n∈N ⊂ L∞(X, ν) converges weak* towards g ∈ L∞(X, ν) if

lim

∫
gnϕdν(x) =

∫
gϕ dν(x), ∀ϕ ∈ L1(X, ν).

Essential property of weak* topology:

Theorem 2. (Banach-Alaoglu) Suppose {gn}n∈N and supn∈N ||gn||∞ <∞, then
{gn}n has a weak* convergent subsequence.

An issue is that sequences of indicator functions don’t converge to indicator
functions.

Second relaxation to ensure that can stilld efine a related problem with a
solution: Let u(x) ∈ [0, 1] be a weak classifier. Then,

Rε(u) =

∫
1− u(x) dµ1(x) +

∫
u(x) dµ0(x)

+

∫
ν-ess supx̃∈Bε(x)u(x̃)− u(x) dµ0(x) +

∫
u(x)− ν-ess infx̃∈Bε(x)u(x̃) dµ1(x)

The compactness property is better for the space of weak classifiers: sequences
of functions mapping into [0, 1] converge to functions mapping into [0, 1].

After these relaxations, we can now apply the direct method.
Conclusion: There exist solutions to

inf u ∈ L∞(X , ν), u ∈ [0, 1]R̃ε(u). (ATPrelax)

Coarea Formula:

R̃ε(u) =

∫ 1

0

R̃ε(1{u≥s}) ds

As a consequence of the coarea formula. Let u∗ be the solution to ATPrelax,
then

inf
A
R̃ε(1A) ≤

∫ 1

0

R̃ε(1{u∗>s}) ds = R̃ε(u
∗) ≤ inf

A
R̃ε(1A).

So, for Lebesgue a.e. s ∈ [0, 1], R̃ε(1{u∗>s}) = infA R̃ε(1A), which solves
the binary classification problem. (i.e. weak and hard classifier problems are
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equivalent for binary classification in the adversarial setting) However, this does
not extend to the K-classification problem for K > 2.

Finally, back to (ATPdecision).
Assume: if ∪x∈supp(µ0+µ1)Bε(x) ⊆ supp ν, then we can show that for every

A ∈ B(X ), there exists a set Ã that is ν-equivalent (i.e. ν(A∆Ã) = 0) such that

sup
x̃∈Bε(x)

1Ã(x̃) = ν-ess supx̃∈Bε(x)1A(x̃)

inf
x̃∈Bε(x)

1Ã(x̃) = ν-ess infx̃∈Bε(x)1A(x̃)

for all x ∈ supp(µ0 + µ1).
In particular, a good choice is ν = µ0 + µ1 + γ, where γ is the standard

Gaussian measure.

4.1 Further Remarks and References
1. In class I mentioned that the AT problem in the classification setting for

weak classifiers may not be equivalent to the problem for hard classifiers
once the number of classes is greater than 2. You can find a nicely
illustrated example of this situation in Appendix C.5. in the paper On the
Role of Randomization in Adversarially Robust Classification (see https:
//hal.science/hal-04312028/document). Compare this with Exercise 1
from Lecture 1 for the standard risk minimization problem.

2. The exercises for this lecture are developed at different places in the
paper The geometry of adversarial training in binary classification (https:
//arxiv.org/abs/2111.13613).

4.2 Exercises
1. Let ν be the uniform distribution over the interval [0, 1].

(a) Give an example of a collection {An}n∈N of Borel subsets of the
interval [0, 1] such that f1An converges weakly∗ toward some u ∈
L∞([0, 1], ν) as n goes to infinity, but u does not take the values 0 or
1 (in particular u is not an indicator function of a set).

(b) (Lower and upper bounds are preserved by weak∗ convergence) Sup-
pose that {un}n∈N is a sequence in L∞([0, 1], ν) that satisfies:

0 ≤ un(x) ≤ 1,

for ν-a.e. x ∈ [0, 1] and all n. Show that if the sequence converges in
the weak∗ topology of L∞(X , ν) toward some u, then u also satisfies

0 ≤ u(x) ≤ 1,

for ν-a.e. x ∈ [0, 1].
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2. (Sequential l.s.c. for relaxation of AT) In the context of what was discussed
in class, suppose that ν is a (finite) positive measure that satisfies the
following properties:

(a) The measure µ0 + µ1 is absolutely continuous with respect to ν.

(b) (Lebesgue differentiation theorem). For every g ∈ L1(X , ν) we have:

lim
r→0+

1

ν(Br(x))

∫
Br(x)

g(x̃)dν(x̃) = g(x), ν − a.e. x ∈ X .

Prove that the function:

u ∈ L∞(X , ν) 7→Ψ(u) :=

∫
u(x)dµ0(x) +

∫
(1− u(x))dµ1(x)

+

∫
(ν-ess supx̃∈Bε(x)u(x̃)− u(x))dµ0(x)

+

∫
(u(x)− ν-ess infx̃∈Bε(x)u(x̃))dµ1(x)

is sequentially lower semicontinuous with respect to the weak∗ topology.

3. (Coarea formula) Prove that Ψ from the previous exercise satisfies the
coarea formula. Namely, if u takes values between 0 and 1, then

Ψ(u) =

∫ 1

0

Ψ(1{u>s})ds.

4. Prove that if A∗ is a solution to the (AT) problem we discussed in class
today, then any Borel set B satisfying

Opε(A
∗) ⊆ B ⊆ Clε(A∗)

is a solution to the (AT) problem.
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5 Lecture 5
Scribes: Rachel Morris and Kevin Ren

Definition 2. (Morphological Operations) Let A ⊂ X and ε > 0. We define

1. Dilation as Aε = {x ∈ X : d(x,A) < ε}

2. Erosion as A−ε = {x ∈ X : d(a,Ac) ≥ ε}

3. Closing as clε(A) = (Aε)−ε

4. Opening as opε(A) = (A−ε)ε

Recall (ATPdecision):

min
A∈B(X )

R(1A)+

∫
sup

x̃∈Bε(x)

1A(x̃)−1A(x) dµ0(x)+

∫
1A(x)− inf

x̃∈Bε(x)
1A(x̃) dµ1(x)

where R(1A) is the standard Bayes risk. We need to be careful with topology
and relax the problem twice in order to show existence of solutions (pervious
class for details).

Once we have shown ∃A∗ minimizer of (AT), then any B satisfying

opε(A
∗) ⊆ B ⊆ clε(A

∗)

is a solution to (AT). This is one of the exercises from the previous day.
Using these operations, we can find solutions that have one-sided regularity.

Specifically, the set opε(A∗) is ε inner regular, i.e.e for every x ∈ ∂opε(A
∗), there

exists x̃ ∈ opε(A
∗) such that x ∈ ∂Bε(x̃) and Bε(x̃) ⊆ opε(A

∗). Similarly clε(A∗)
is ε outer regular, i.e. for every s ∈ ∂clε(A

∗), there exists x̃ ∈ clε(A
∗)c such that

x ∈ ∂Bε(x̃) and Bε(x̃) ⊆ clε(A
∗)c.

To construct regular solutions, we want to interpolate between opε(A
∗)

and clε(A
∗). Due to the inner and outer regularity, this guarantees that the

boundaries do not oscillate too much when opε(A∗) and clε(A∗) touch. We will
not go through the details of this proof. Usually, we would expect the regularity
to be C1,1 for these sorts of conditions, but this has not been proven yet.

Probabilistic version of (ATPdecision) (binary case): First, rewrite (AT) as

R(1A) +

∫
Ac

1supx̃∈Bε(x) 1A(x̃)>0 dµ0(x) +

∫
A

1supx̃∈Bε(x) 1Ac (x̃)>0 dµ1(x).

In other words, we penalize the existence of an attack in Bε(x). For the
probabilistic version, we will now need the probability of an attack to be greater
than some p ∈ [0, 1], that is for some measure mx,ε, mx,ε(A) > 0 for p = 0.
Here, {mx,ε}x is a family of probability measures localized around Bε(x). One
example would be mx,ε = Unif(Bε(x)) (although in higher dimensions this may
concentrate too much along the boundary). A more quantitative probabilistic
version of (ATPdecision) is the following probabilistically robust learning (PRL)
problem:
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PRLε,p(1A) := R(1A) +

∫
Ac

1mx,ε(A)>p dµ0(x) +

∫
A

1mx,ε(A)>p dµ1(x). (PRL)

Currently, there is no proof of existence for solutions of PRL. The relaxation
technique may not work when redefining for weak classifiers u ∈ [0, 1], we
cannot use a coarea formula argument like in proving existence of solutions for
(ATPdecision).

We will further generalize PRL. Given a non-decreasing function Ψ : [0, 1] →
[0,∞), we define the generalized PRL risk w.r.t. Ψ as

PRLε,Ψ := R(1A) +

∫
Ac

Ψ(mx,ε(A)) dµ0(x) +

∫
A

Φ(mx,ε(A
c)) dµ1 (PRLgen)

Note that if Ψ(t) = 1t>p, then we recover PRLε,p. It will be sufficient to
assume that Ψ is concave to get desired existence of solutions. However, not
that indicator functions do not satisfy this criteria.

Example. Ψ(t) :=

{
t
p if t ≤ p,

1 if t > p.

Note that the above example is the smallest concave function that lies above
indicator functions.

Q: how to choose the measure mx,ε?
A: usually uniform measure. In high dimensions, may need to be a little careful

due to concentration of measure around the boundary. In the original formulation
of PRL from 2022 (not the one above), you may get weird phenomenon where if
you choose certain measures, then the adversary is “helping” instead of hurting
you.

Proof for existence of solutions: as before, switch to weak classifiers.

R(u) + JΨ(u)

where R is the standard risk for weak classifiers (as seen previously) and

JΨ(u) =

∫
(1−u(x))Ψ

(∫
u(x̃) dmx,ε(x̃)

)
dµ0(x)+

∫
u(x)Ψ

(∫
1− u(x̃) dmx,ε(x̃)

)
dµ1(x)

Can we use the direct method of calculus of variation to find a solution to
this relaxed problem? We don’t have a coarea formula even if Ψ is concave.
Fortunately, we can save this by relaxing further. Define

VΨ(u) :=

∫ 1

0

JΨ(1{u>s}) ds. (1)

Observe that VΨ(1A) = JΨ(1A) for all A ∈ B(X ). In particular, using this
and (1), we see that VΨ satisfies the coarea formula

VΨ(u) =

∫ 1

0

VΨ(1{u>s}) ds.
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Note that because JΨ does not satisfy the coarea formula in general, we
cannot say VΨ(u) = JΨ(u) for all weak classifiers u.

However, if Ψ is a concave function, the following properties hold for the
triplet (R+ JΨ, R+ VΨ, weak* in L∞(X , ν)):

1. VΨ(1A) = JΨ(1A) for all A ∈ B(X )

2. JΨ(u) ≥ VΨ(u) for all u : X → [0, 1] (using Jensen’s inequality and the
fact the Ψ is concave)

3. JΨ is sequentially lower semi-continuous wrt weak* in L∞(X , ν)

4. VΨ satisfies the coarea formula, VΨ(u) =
∫ 1

0
JΨ(1{u>s}) ds

Note that we cannot say that VΨ is l.s.c. (or else we could just jump to the
definition of VΨ without JΨ).

Proof. Let {An_n ∈ N} be such that 1An →∗ u and let it be a minimizing
sequence of

inf
A∈B(X )

{R(1A) + JΨ(1A)} = lim
n→∞

R(1An) + JΨ(1An)

= lim inf
n→∞

R(1An
) + JΨ(1An

)

≥ R(u) + JΨ(u) (Property 3)
≥ R(u) + VΨ(u) (Property 2)

=

∫ 1

0

R(1{u>s} + VΨ(1{u>s}) ds (Property 4)

=

∫ 1

0

R(1{u>s}) + JΨ(1{u>s}) ds (Property 1)

≥ inf
A
{R(1A) + JΨ(1A)}

Yesterday, we used the coarea formula for JΨ to finish the proof. This is not true,
but today we instead dominated JΨ(u) by VΨ(u), and used the coarea formula
for VΨ. Thus, convexity of Ψ was crucial for the proof.

Q: can we use distributions (Young measures) instead of functions to simplify
the argument?

A: sounds reasonable, haven’t tried it yet
Further properties of A ∈ B(X ) → JΨ(1A)
Assume Ψ is concave.

1. JΨ(1A∩B) + JΨ(1A∪B) ≤ JΨ(1A) + JΨ(1B) for all A,B ∈ B(X ) (submodu-
larity)

2. If Ψ(0) = 0, then JΨ(1∅) = JΨ(1X) = 0
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Proposition 1. Let A be a set with “smooth enough” boundary.

lim
ε→0

JΨ,ε(1A)

ε
= cΨ

∫
∂A

(ρ0(x) + ρ1(x)) dHd−1(x)

where mx,ε = Unif(Bε(x)), dµ0 = ρ0 dx, and dµ1 = ρ1 dx.

Conclusion: PRL for general learning models
There’s an advantage to just having integrals rather than sup’s, so we don’t

have to solve an optimization problem.

inf
f∈F

E(x,y)∼µ [max{ℓ(f(x), y),CVarp(ℓ(f(x̃), y; x̃ ∼ mx,ε}]

where the CVar is

CVarp(ξ, ξ ∼ γ) = Eξ∼γ [ξ|ξ ≥ Varp(ξ; ξ ∼ γ)]

where Varp(ξ; ξ ∼ γ) = x if
∫ x
−∞ dγ = p. (Not to be confused with variance!)

Then,

R(1A) + JΨ(1A) = E(x,y)∼[max{ℓ(1A(x), y),CVar)ℓ(1A(x̃, y); x̃ ∼ mx,ε}

where Ψ =

{
t
p if t ≤ p

1 if t > p.

Nice property: If you rescale loss function by a scalar, then solutions won’t
change because CVar is homogeneous.

Advertisement: AMS workshop in the summer!
Q: How to compute CVar?
A: Solution to infα∈R α+ E[(ξ−α)+]

p .

5.1 Exercises
1. Consider the standard AT problem in the binary classifications setting

with F = Fall, the 0− 1 loss function, the Euclidean distance as metric
for the attacks, and some ε > 0. Give an example of a data distribution
µ ∈ P(X × {0, 1}) for which there is no solution to the corresponding AT
problem that is ε pseudo-certifiable. You may consider simple distributions
supported on finitely many points.

Definition: A set is said to be ε pseudocertifiable if it is both ε inner
regular and ε outer regular.

2. Prove that if Ψ : [0, 1] 7→ [0,∞) is a concave and non-decreasing function,
then the functional

A ∈ B(X ) 7→ JΨ(1A)

introduced in class is submodular.
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3. Prove that the functional

u ∈ L∞(X , ν) 7→ JΨ(u)

introduced in class is sequentially l.s.c. with respect to the weak∗ conver-
gence in L∞(X , ν), provided that Ψ is continuous.

4. In the binary classification setting with the 0 − 1 loss, we mentioned in
class that the functional

R(1A) + JΨp(1A),

for Ψp the function

Ψp(t) :=

{
t
p if t ≤ p

1 if t > p,

could be written as

E(x,y)∼µ[max{ℓ(1A(x), y),CVarp(ℓ(1A(x̃), y); x̃ ∼ mx,ε)}].

Prove this fact.

5. (Open and not well formulated open problem) How could one "learn"
a suitable cost function to implement AT in applications? It may be
reasonable to assume that you are familiar with a very good adversarial
attack in the setting of interest and that thus you can assume is optimal
for some AT problem relative to some hidden cost/metric. One can
then, perhaps, use an idea similar to the one discussed in this paper about
“inverse optimal transport" https://arxiv.org/pdf/1905.03950.pdf, as
presumably one can exploit the connection between AT and OT that we
discussed in class to implement "inverse AT".
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