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1. Overview

The C0,α-regularity theorem for weak solutions to elliptic equations with measurable
coefficients asserts that if Ω is an open set in Rn (n ≥ 2) and u ∈ W 1,2

loc (Ω) is a weak
solution of the elliptic equation −div (A(x)∇u) = 0, in the sense thatˆ

Ω
∇φ ·A(x)∇u = 0 ∀φ ∈ C∞

c (Ω) , (1.1)

then u ∈ C0,α
loc (Ω) for some α = α(n,Λ/λ) ∈ (0, 1). Here A(x) is a measurable field of

symmetric matrices which is uniformly elliptic, i.e., there exist constants 0 < λ ≤ Λ < ∞
such that λ id ≤ A(x) ≤ Λ id for a.e. x ∈ Ω. The first proofs of this celebrated result are
independently due to De Giorgi and Nash, in two historical and very influential papers.
These lecture notes focus on De Giorgi’s proof, and have been written for the PDE I course
taught by the author at UT Austin during the Fall 2019 semester.

2. Isoperimetry and boundedness of isoperimetric sets

This section, informal concerning mathematical rigor, has the aim to illustrate how
isoperimetric/Sobolev inequalities can be used to exploit energy minimality to obtain decay
estimates for certain geometric quantities. Both the equivalence between isoperimetric and
Sobolev inequalities (through the coarea formula), and the fact that these bounds could
be combined with minimality to prove density/decay estimates, are two signature traits of
the original point of view on elliptic equations introduced by De Giorgi in his work. These
ideas take a particular simple form in the geometric setting of isoperimetric problems
(at least if one is not interested in rigorous justifications), and seem to provide a clear
motivation for the key argument used in proving the Boundedness Theorem, Theorem 3.2.

The setting for our toy, illustrative model, will be the following. We look at sets E ⊂ Rn

with volume |E| and perimeter P (E), where P (E) stands for “the (n − 1)-dimensional
measure of the boundary of E”. We write P (E) = Hn−1(∂E) with, say, Hn−1 the (n− 1)-
dimensional Hausdorff measure on Rn and ∂E the topological boundary of E. This is not
exactly the right technical setting, which indeed requires the introduction of sets of finite
perimeter, but will serve well for our more limited (and more interesting!) illustrative
purposes.
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With this notation set, we consider an isoperimetric set E in Rn, i.e.

P (E) ≤ P (F ) ∀F ⊂ Rn , |F | = |E| . (2.1)

Everyone knows that such a set E must be a ball, but we will pretend to ignore it, and
to set for ourself the task of showing that every set E satisfying (2.1) has diameter
bounded in terms of n, |E| and P (E). We will prove this result by exploiting the
validity of

P (E) ≥ c(n) |E|(n−1)/n , (2.2)

for some constant c(n) > 0. By combining Fubini’s theorem and the divergence theorem
we can easily show that (2.2) holds with c(n) = 1 for example. This is not the sharp

constant, and of course computing the sharp constant c(n) = n |B1|1/n requires proving
that the balls are isoperimetric sets (which is a stronger result than our diameter estimate).
However, we shall only need (2.2) in non-sharp form to prove the diameter estimate, so that
our argument could still be useful in an hypothetic approach to solving the isoperimetric
problem in Rn which would require an a-priori diameter bound to conclude the sphericity
of isoperimetric sets.

We now start proving the diameter estimate. We fix the direction e1 and look into the
volume function

V (t) = |E ∩ {x1 > t}| .
We aim at showing that if

V (t0) ≤ ε0

for some universal ε0 depending on n, |E| and |E|/P (E) only (see (2.12) below),
then we must have

V (t0 + T0) = 0 where T0 = 4nV (t0)
1/n,

which, in particular, implies the one-sided bound E ⊂ {x1 < t0 + T0}. This point of view
of “conditional” boundedness estimate is used in two key parts of De Giorgi’s proof of the
C0,α-theorem.

To prove the decay of V (t) we compare E with E ∩ {x1 < t}, its truncation by the
half-space {x1 < t}, by means of (2.1). Since |E ∩ {x1 < t}| < |E| (unless V (t) = 0 and
thus we have nothing to prove!) we cannot set F = E ∩ {x1 < t} in (2.1), but we rather
have to work with

F = λ(t)
(
E ∩ {x1 < t}

)
,

where λ(t) is the scaling factor given by

λ(t) =
( |E|
|E ∩ {x1 < t}|

)1/n
=

( |E|
|E| − V (t)

)1/n
≥ 1 ,

and, thus, such that |F | = |E|. Considering that P (λG) = λn−1 P (G) for every G ⊂ Rn,
we deduce from (2.1) the family of inequalities

P (E) ≤
( |E|
|E| − V (t)

)1/n
P (E ∩ {x1 < t}) , ∀t ∈ R . (2.3)

These are rewritten more conveniently by noticing that, for a generic value of t,

P (E) = Hn−1({x1 < t} ∩ ∂E) +Hn−1({x1 > t} ∩ ∂E) , (2.4)

P (E ∩ {x1 < t}) = Hn−1({x1 < t} ∩ ∂E) +Hn−1(E ∩ {x1 = t}) . (2.5)

Indeed these relations hold if ∂E has no vertical parts of positive area inside {x1 = t},
i.e. if Hn−1(∂E ∩ {x1 = t}) = 0. This holds for at most countably many values of t, for
otherwise we would have P (E) = +∞ (a sum on non-negative terms parameterized over
an uncountable set is finite only if at most countably many terms are positive). This is
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also a good point to take note of two additional geometric facts: the first one characterizes
the second term on the RHS of (2.5) as the (negative) derivative of V (t), i.e.

Hn−1(E ∩ {x1 = t}) = −V ′(t) , for a.e. t , (2.6)

and it is immediately deduced by Fubini’t theorem V (t) =
´ t
−∞ Hn−1({x1 = s} ∩ E) ds;

the second one is a direct consequence of the divergence theorem,

Hn−1(E ∩ {x1 = t}) ≤ Hn−1({x1 > t} ∩ ∂E) , (2.7)

with equality only iff V (t) = 0. Indeed, by applying the divergence theorem on the set
E∩{x1 > t} with constant vector field e1, and noticing that the boundary of E∩{x1 > t}
consists of the union of E ∩ {x1 = t} (outer unit normal −e1) and {x1 > t} ∩ ∂E (same
outer unit normal νE as ∂E), we see that

0 =

ˆ
E∩{x1>t}

div e1 =

ˆ
∂(E∩{x1>t})

e1 · νE∩{x1>t}

=

ˆ
E∩{x1=t}

e1 · (−e1) +
ˆ
{x1>t}∩∂E

νE · e1 ,

so that (2.7) follows, with equality holds iff νE = e1 on {x1 > t}∩ ∂E, which is equivalent
(by an additional argument) to V (t) = 0. Notice that (2.7) combined with (2.4) and (2.5)
also gives

P (E ∩ {x1 < t}) ≤ P (E) , (2.8)

for a.e. t ∈ R, with strict inequality unless V (t) = 0.
By combining (2.4), (2.5), (2.6) and the Lipschitz bound( 1

1− a

)(n−1)/n
≤ 1 + C(n)a ∀α ∈ (0, 1/2) ,

we deduce from (2.3) that, if V (t) ≤ |E|/2, then

Hn−1({x1 < t} ∩ ∂E) +Hn−1({x1 > t} ∩ ∂E)

≤
(
1 + C(n)

V (t)

|E|

){
Hn−1({x1 < t} ∩ ∂E)− V ′(t)

}
.

By canceling out Hn−1({x1 < t}∩∂E) on both sides, and then by recalling that the terms
between {...} equal P (E ∩ {x1 < t}) ≤ P (E) (recall (2.8)), we thus find

Hn−1({x1 > t} ∩ ∂E) ≤ −V ′(t) + C(n)
P (E)

|E|
V (t) , for a.e. t s.t. V (t) ≤ |E|

2 . (2.9)

We now wish to exploit the non-sharp isoperimetric inequality P (G) ≥ |G|(n−1)/n to deduce
from (2.3) a differential inequality (implying decay in finite time) for V (t). To this end,
we add to both side of (2.3) a term −V ′(t) = Hn−1(E ∩ {x1 = t}) and then exploit the
variant of (2.5) for E ∩ {x1 > t} to rewrite (2.9) into the equivalent form

P ({x1 > t} ∩ E) ≤ −2V ′(t) + C(n)
P (E)

|E|
V (t) , for a.e. t s.t. V (t) ≤ |E|

2 . (2.10)

By applying P (G) ≥ |G|(n−1)/n with G = {x1 > t} ∩ ∂E we thus find

V (t)(n−1)/n ≤ −2V ′(t) + C0(n)
P (E)

|E|
V (t) , for a.e. t s.t. V (t) ≤ |E|

2 . (2.11)

The key analytic feature brought in by isoperimetric inequality is the appearance of the
sublinear power (n−1)/n of V (t) on the LHS of (2.11); indeed, the monotonicity of V (t)
and the fact that V (t) appears with a linear power on the RHS of (2.11) will allow us to
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reabsorb the linear term on the RHS into the sublinear term on the LHS. More precisely,
we notice that

C0(n)
P (E)

|E|
V (t) ≤ 1

2
V (t)(n−1)/n iff V (t) ≤

( |E|
2C(n)P (E)

)n
.

Setting

ε0 = min
{( |E|

2C0(n)P (E)

)n
,
|E|
2

}
, (2.12)

we find that if V (t0) ≤ ε0 then V (t) ≤ ε0 for every t > t0 and thus

C0(n)
P (E)

|E|
V (t) ≤ 1

2
V (t)(n−1)/n ∀t > t0 ,

allowing us to deduce from (2.11)

V (t)(n−1)/n

2
≤ −2V ′(t) , for a.e. t ∈ (t0,∞) . (2.13)

This is easily rewritten as

1

4
≤ −

(
nV (t)1/n

)′
, for a.e. t ∈ (t0,∞) ∩ {V > 0} ,

which gives

V (t)1/n ≤ V (t0)
1/n − t− t0

4n
∀t ∈ (t0,∞) ∩ {V > 0} .

In other words we have V (t0 + T0) = 0, and thus E ⊂ {x1 < t0 + T0}, provided we set

T0 = 4nV (t0)
1/n .

This proves the conditional boundedness estimate we stated above. We notice (for the sake
of completeness) that the conditional boundedness estimate has to be combined with some
additional arguments in order to deduce the containment of E into a slab {a < x1 < b}
with b−a bounded in terms of n, P (E) and |E|. These arguments are omitted, as they are
less relevant to the proof of the C0,α-theorem. A good reference for a complete discussion
is found in [Mag08].

3. Boundedness for solutions to elliptic equations

We now consider u ∈W 1,2
loc (Ω) solving −div (A(x)∇u) = 0 in the sense of distributions,

i.e. ˆ
∇φ ·A(x)∇u = 0 ∀φ ∈ C∞

c (Ω) ,

where A(x) is uniformly elliptic as in the introduction. The goal of this section is proving
that u ∈ L∞

loc(Ω), but we shall actually prove an estimate which contains much more
information, as it will give uniform upper (and lower) bounds on u in terms of weaker,
integral quantities. The structure of the argument is the same one we have illustrated on
the isoperimetric problem, and we shall use that analogy to guide our exposition. To this
end we start noticing that a solution u to (1.1) is minimizing the energy

Q(u) =

ˆ
∇u ·A(x)∇u

with respect to compactly supported variations of u in Ω (and with the support of the
variation intended as the domain of integration to take into account that we are not
necessarily assuming u ∈W 1,2(Ω)). Having in the comparison argument from the previous
section, where the perimeter of the set E was compared to that of its truncation E∩{x1 <
t} (properly rescaled to fix the volume constraint), see (2.3) (or its alternative forms (2.9)
and (2.10)), we now compare the Q-energy of u with its truncation min{u, t} (properly
localized to fix the boundary data). Testing Q-minimality against a competitor is however
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equivalent to test the elliptic equation (1.1) against a specific variation. In this case,
φ = ζ2 (u−t)+ where ζ is a localizing factor. The usual proof of the Caccioppoli inequality
is then repeated verbatim to find the following estimate: for every BR ⊂⊂ Ω, r < R, and
t ∈ R we have ˆ

{u>t}∩Br

|∇u|2 ≤ C(n,Λ)

(R− r)2

ˆ
BR

(u− t)2+ . (3.1)

Needless to say, an analogous estimate holds for truncations from below,ˆ
{u<t}∩Br

|∇u|2 ≤ C(n,Λ)

(R− r)2

ˆ
BR

(t− u)2+ . (3.2)

Given these two families of inequalities, one does not need to invoke (1.1) anymore for

proving that u ∈ C0,α
loc (Ω). For this reason, the following definition is introduced: given

γ > 0, a function u ∈W 1,2
loc (Ω) is in the upper De Giorgi class DG+

γ (Ω) ifˆ
{u>t}∩Br

|∇u|2 ≤ γ

(R− r)2

ˆ
BR

(u− t)2+ , ∀Br ⊂⊂ BR ⊂⊂ Ω ,∀t ∈ R ; (3.3)

u is in the lower De Giorgi class DG−
γ (Ω) ifˆ

{u<t}∩Br

|∇u|2 ≤ γ

(R− r)2

ˆ
BR

(t− u)2+ , ∀Br ⊂⊂ BR ⊂⊂ Ω ,∀t ∈ R . (3.4)

Finally, we set DGγ(Ω) = DG+
γ (Ω) ∩DG−

γ (Ω). We can thus reformulate our final goal as
follows:

Theorem 3.1 (De Giorgi’s theorem). If u ∈ DGγ(Ω) for some γ > 0, then u ∈ C0,α
loc (Ω)

for some α = α(n, γ) ∈ (0, 1).

It is a fact that solutions (or functions related to solutions) of many other PDE and/or
variational problems belong to a De Giorgi’s class, or at least to some closely related notion
of regularity class for which one can still prove Theorem 3.1. This versatility has been of
course crucial in establishing the relevance of these methods.

Coming back to the goal of this section, we turn to the problem of showing the bound-
edness of u ∈ DG(Ω). We shall actually focus on proving upper bounds for u ∈ DG+

γ (Ω)

(lower bounds for u ∈ DG−
γ (Ω) will follow immediately by noticing that v ∈ DG+

γ iff

−v ∈ DG−
γ ).

In order to prove upper bounds, we look back to the previous section. There the
unilateral, uniform bound E ⊂ {x1 < t0 + T0} was obtained as a consequence of a decay
estimate for the decreasing “control function” V (t) = |E ∩ {x1 < t}|. In the case of u, we
shall need to introduce two control functions (this is technical, and somehow not really
necessary, see the introduction of Φ = V Ip in the proof below) depending monotonically
on two independent variables, the localization radius r and the truncation height t: the
functions are

V (r, t) = |Br ∩ {u > t}| , I(r, t) =

ˆ
Br

(u− t)2+ .

Notice that they are both increasing in r and decreasing in r. If either V or I vanishes at
some (r, t), this means that u is bounded from above by t inside Br. The fact that two
parameters are needed, rather than just one, is related to the fact that if u solves (1.1),
then for every a > 0 and b ∈ R, v(x) = u(a x) + b still solves an elliptic equation with
same ellipticity constants (similarly, if u ∈ DG+

γ (Ω), then automatically v ∈ DG+
γ (Ω/a)).

With this premise in mind, we state the main result of this section.
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Theorem 3.2. If u ∈ DG+
γ (Ω), then for every BR ⊂⊂ Ω and every t ∈ R we have

Ln sup
BR/2

u ≤ t+ C(n, γ)
(I(R, t)

Rn

)1/2 (V (R, t)

Rn

)ε/2
(3.5)

where

ε =

√
1

4
+

2

n
− 1

2
. (3.6)

Recall that in the previous section we proved that if E is an isoperimetric set, or actually
any set satisfying (2.9) for some constant C(n), and if V (t0) ≤ ε0 = ε0(n, |E|, |E|/P (E)) as
in (2.12), then E ⊂ {x1 < t0 + T0} with T0 = 4nV (t0). The inclusion E ⊂ {x1 < t0 + T0}
should be compares to (3.5), which is indeed an inclusion (of the subgraph of u into a
horizontal half-space in Rn+1).

Proof. Step one: A key idea section 2 was combining our basic minimality inequality
(2.9), in its alternative form (2.10), with the (non-sharp) isoperimetric inequality to obtain
(2.11). Indeed, this allowed us to obtain a sublinear power of V (t) on the LHS of (2.11),
which, ultimately, was responsible for the geometric decay rate of V (t), and thus for
the boundedness result. We now mimic that argument, with the (non-sharp) L2-Sobolev
inequality ( ˆ

Rn

v2
⋆
)1/2⋆

≤ C(n)
(ˆ

Rn

|∇v|2
)1/2

, 2⋆ =
2n

n− 2
, (3.7)

playing the role of the (non-sharp) isoperimetric inequality. As a result, we prove that

I(r, t) ≤ C(n, γ)

(R− r)2
I(R, t)V (r, t)2/n , ∀r < R , t ∈ R , (3.8)

where the 2/n-power descends directly from the Sobolev exponent 2⋆. To prove (3.8), we
pick ζ a cut-off function between Br and B(R+r)/2 and apply first Hölder’s inequality, and

then the Sobolev inequality on Rn to ζ2(u− t)+, to get

I(r, t) =

ˆ
Br

(u− t)2+ ≤
ˆ
Rn

(ζ2(u− t)+)
2

≤
(ˆ

Rn

(ζ2(u− t)+)
2⋆
)2/2⋆

|spt(ζ2(u− t)+)|1−(2/2⋆)

≤ C(n)V (R, t)2/n
ˆ
Rn

|∇(ζ2(u− t)+)|2 ,

where, thanks to |∇ζ| ≤ C/(R− r),ˆ
Rn

|∇(ζ2(u− t)+)|2 ≤ C

ˆ
B(r+R)/2∩{u>t}

|∇u|2 + C

(R− r)2

ˆ
B(R+r)/2

(u− t)2+

≤ C(n, γ)

(R− r)2

ˆ
BR

(u− t)2+ .

This proves (3.8). Since both I and V appear in (3.8), in order to iterate (3.8) it will be
necessary to also have a control of V in terms of I. This is easily obtained in the form

V (r, t) ≤ I(r, s)

(t− s)2
∀s < t , r > 0 . (3.9)

To prove (3.9) we just notice that

(t− s)2 V (r, t) ≤
ˆ
Br∩{u>t}

(u− s)2+ ≤ I(r, s) .
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Step two: The idea is now to iterate (3.8) and (3.9) to prove decay to zero of the sup-norm
in finite space (radius of the ball) and cutting height. (In analogy with section 2, iteration
is taking here the role of integration of the ODE obtained there!) In other words, starting
from (3.8) and (3.9), we want to show that either V (R/2, t+h) or I(R/2, t+h) is zero for
a suitable choice of h depending on I(R, t) and V (R, t) (cf. with (3.5)). From a technical
viewpoint, the iteration scheme is much more transparent if rather than looking at V and
I through separate chains of inequalities, we rather mix them into a single function of the
form

Φ(r, t) = V (r, t) I(r, t)p for some p > 0 .

Indeed, Φ(R/2, t + h) = 0 still implies that u is bounded from above by t + h in BR/2.
The choice of p has to be made to get a neat decay inequality in place of the system of
inequalities (3.8)–(3.9). To this end given r < R and t > s we exploit (3.8), (3.9) and the
monotonicities of I and V in their variables to get

Φ(r, t) = V (r, t) I(r, t)p ≤ C(n, γ)

(R− r)2p(t− s)2
V (R, s)2p/n I(R, s)1+p

=
C(n, γ)

(R− r)2p(t− s)2
Φ(R, s)q

for some q > 0 provided n and p are related by

1 + p = qp , q =
2p

n
.

We thus obtain
2

n
p2 − p− 1 = 0 iff p =

n

4
+
n

4

√
1 +

8

n
,

which gives

q =
1

2
+

√
1

4
+

2

n
= 1 + ε ε =

√
1

4
+

2

n
− 1 > 0 .

We thus have

Φ(r, t) ≤ C(n, γ)

(R− r)2p(t− s)2
Φ(R, s)1+ε , ∀r < R , t > s . (3.10)

We now fix R0 = R, t0 = t and set

Rk =
R

2
+
R

2k
, tk = t+ h− h

2k
,

so that R0 = R, R∞ = R/2, t0 = t, and t∞ = t+h. By iterating (3.10) we can thus bound
Φ(R/2, t + h) from above in terms of Φ(R, t + d). To see how this work, we just notice
that by (3.10) we have

Φ(Rk+1, tk+1) ≤
C(n, γ)

R2p h2
2(k+1)2p 2(k+1)2Φ(Rk, tk)

1+ε =
C(n, γ)

R2p h2
2k(2p+2)Φ(Rk, tk)

1+ε

(3.11)
The idea now is that the Φε term on the RHS is enough to dampen out the exponential fac-
tor 2k(2p+2). This is more clearly checked by rewriting (3.11) in terms of Ψk = Φ(Rk, tk) 2

k µ

for µ > 0 to be chosen,

ψk+1 ≤ C(n, γ)

R2p h2
2k(2p+2) 2(k+1)µ−(1+ε) k µ ψ1+ε

k

=
C(n, γ) 2µ

R2p h2
2k(2p+2−ε µ) ψ1+ε

k . (3.12)

Hence the choice of µ is dictated by (3.12), to be

µ =
2p+ 2

ε
.
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In this way (3.12) becomes

ψk+1 ≤
C(n, γ) 2µ

R2p h2
ψ1+ε
k , ∀k , (3.13)

which is what is needed to show that if ψ0 is small enough, then ψk ≤ ψ0 for every k.
Indeed, by (3.13), in order to have ψ1 ≤ ψ0 we just need to choose h so that

C(n, γ) 2µ

R2p h2
ψε
0 = 1 . (3.14)

Arguing inductively, if we have already proved that ψk ≤ ψ0, we deduce from (3.14) that

C(n, γ) 2µ

R2p h2
ψε
k ≤ 1 ,

and thus from (3.13) that ψk+1 ≤ ψ0. Since ψk ≤ ψ0 for every k implies Φ(Rk, tk) ≤
2−µk Φ(R0, t0) for every k we conclude that 0 = Φ(R∞, t∞) = Φ(R/2, t+ h), and thus

Ln sup
BR/2

u ≤ t+ h , (3.15)

with h as in (3.14). Using 1 + p = (1 + ε)p and 2
n p

2 − p − 1 = 0 we see that (3.15) is
equivalent to (3.5). �

4. A criterion for Hölder continuity and decay of level sets

Lebesgue points theorem implies that if u ∈ Lp
loc(Ω), 1 ≤ p <∞, then for a.e. x ∈ Ω

lim
r→0+

1

rn

ˆ
Br(x)

|u− (u)x,r|p = 0 , where (u)x,r =

´
Br(x)

u

|Br(x)|
.

If the rate of this decay to zero can be quantified uniformly on x ∈ Ω by a power rα for
some α ∈ (0, 1], then u is equivalent to a C0,α

loc (Ω) function. More formally, Campanato’s
criterion states that the existence of positive constants K and r0 such that ifˆ

Br(x)
|u− (u)x,r|p ≤ K rn+αp

for every x ∈ Ω and every r < min{dist(x, ∂Ω), r0}, then u ∈ C0,α
loc (Ω) (modulo an a.e.

modification). When u ∈ L∞
loc(Ω), we can define the oscillation of u in Br(x) as

ωx(r) = Ln sup
Br(x)

u− Ln inf
Br(x)

=Mx(r)−mx(r) ,

and easily deduce from Campanato’s criterion that, if

ωx(r) ≤ K rα , for every x ∈ Ω and r < min{dist(x, ∂Ω), r0} , (4.1)

then u is equivalent to a C0,α
loc (Ω) function. In turn, a practical way to check the validity

of (4.1) is given in the following lemma (notice that ωx(r) is defined for r < dist(x, ∂Ω)
and is increasing in r).

Lemma 4.1. If ω : (0, r0) → [0,∞) is an increasing function such that there exist t, η ∈
(0, 1) with

ω(t r) ≤ η ω(r) , ∀r ∈ (0, r0) ,

then ω(r) ≤ C rα for every r ∈ (0, r0) where

α =
log η

log t
, C =

ω(r0)

η rα0
.
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2r

4r

ω(4r)

r

δ ω(4 r)

M(4 r)

µ(4 r)

m(4 r)

L∞

L1

Figure 4.1. A schematic representation of the assumption (on the left) and of

the conclusion (on the right) of Theorem 4.2, where a (sort of) L1-bound is shown

to imply a one-sided L∞-bound. The diagram on the left is intended to suggest

that u “takes most of its values on B2r” below its average µ(4r) on B4r; the precise

form of this concept is (4.2). Theorem 4.2 states that if (4.2) holds, then we have

the diagram on the right, i.e., u takes all of its values below M(4r)− δ ω(4r).

Proof. Let r ∈ (0, r0) and let k ∈ N be such that tk+1 r0 ≤ r < tk r0, then

ω(r) ≤ ω(tk r0) ≤ ηk ω(r0) =
ω(r0)

η
ηk+1

=
ω(r0)

η
t(k+1)α =

ω(r0)

η rα0
(tk+1 r0)

α ≤ ω(r0)

η rα0
rα .

�
Thus the goal is showing the existence of t, η ∈ (0, 1) and r0 > 0 such that

ωx(η r) ≤ t ωx(r)

whenever x ∈ Ω and r < min{dist(x, ∂Ω), r0}. We drop the dependency on x and set

Br = Br(x) , m(r) = Ln inf
Br

u , M(r) = Ln sup
Br

u ,

ω(r) =M(r)−m(r) , µ(r) =
M(r) +m(r)

2
.

We shall now prove the existence of δ ∈ (0, 1) such that if B4r ⊂⊂ Ω, then

ω(r) ≤ (1− δ)ω(4r) .

(The change of variables η = 1− δ is adopted because it leads to nicer formulas.) Notice
that ω(r) may be smaller than ω(4r) either because M(r) has decreased by −δ ω(4r) with
respect toM(4r), or because m(r) has increased by δ ω(4r) with respect to m(4r), in other
words, it is enough to show that if B4r ⊂⊂ Ω, then either

M(r) ≤M(4r)− δ ω(4r)

or
m(r) ≥ m(4r) + δ ω(4r) .

An important insight is that one can decide which of the two alternatives is going to
happen by looking at the relative size of V (2 r, µ(4r)) = |B2r ∩ {u > µ(4r)}| with respect
to |B2r|. In other words, see Figure 4.1, by looking to the volume fraction of B2r where u

9



is above its B4r-average, we can tell if it is its Br-maximum that has to decrease, or if it
is its Br-minimum that has to increase.

Theorem 4.2 (De Giorgi’s decay theorem). Given n ≥ 3 and γ > 0 there exists δ ∈ (0, 1)
with the following property. If u ∈ DG+

γ (Ω), B4r ⊂⊂ Ω and

V (2 r, µ(4 r))

|B2r|
≤ 1

2
, (4.2)

then M(r) ≤M(4r)− δ ω(4r).

Proof. Step one: We set

t0 = µ(4r) , tk =M(4r)− ω(4r)

2k+1
, t∞ =M(4r) ,

and show that
V (2 r, tk)

|B2r|
≤ C(n, γ)

kn/2(n−1)
, ∀k ≥ 1 . (4.3)

This estimate may look strange, since V (2r, t) = 0 for every t ∈ (M(2r),M(4r)) and
tk ∈ (M(2r),M(4r)) every k large enough. In other words, (4.3) is trivial for infinitely
many values of k! The real interest of this estimate is that it is quantitative in k, so that
it allows to conclude that V (2 r, tk) is below any prescribed fraction λ of |B2 r| provided k
is chosen large enough in terms of λ (and n and γ).

This decay estimate for V is proved by applying the Sobolev inequality jointly with
u ∈ DG+

γ (Ω) to a double truncation of u. The Sobolev inequality we shall need to use is

the following: if v ∈W 1,1(B2r), v ≥ 0, and |{v = 0} ∩B2r| ≥ |B2r|/2, then( ˆ
B2r

vn/(n−1)
)(n−1)/n

≤ C(n)

ˆ
B2r

|∇v| . (4.4)

Given s < t, we apply this inequality to

v = min{t, u} −min{s, u} =


t− s , on {u > t} ,
u− s , on {t ≥ u > s} ,
0 , on {u ≤ s} ,

provided
|{u < s} ∩B2r|

|B2r|
≥ 1

2
.

Of course this is our case, by (4.2), if we take s ≥ µ(4r). We thus find

(t− s)V (2 r, t)(n−1)/n ≤
( ˆ

B2r

vn/(n−1)
)(n−1)/n

≤ C(n)

ˆ
B2r

|∇v|

= C(n)

ˆ
{s<u≤t}∩B2r

|∇u|

≤ C(n)
( ˆ

{s<u≤t}∩B2r

|∇u|2
)1/2 (

V (2 r, s)− V (2 r, t)
)1/2

≤ C(n, γ)

r

(ˆ
B4r

(u− s)2+

)1/2 (
V (2 r, s)− V (2 r, t)

)1/2

≤ C(n, γ) (M(4 r)− s)+ r
(n/2)−1

(
V (2 r, s)− V (2 r, t)

)1/2
,

that is

V (2 r, t)2(n−1)/n ≤ C(n, γ)
(M(4 r)− s)2+

(t− s)2

(
V (2 r, s)− V (2 r, t)

)
rn−2 .
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We plug in

t = tk+1 =M(4 r)− ω(4 r)

2k+2
, s = tk =M(4 r)− ω(4 r)

2k+1
≥ t0 = µ(4 r) ,

and get

V (2 r, tk+1)
2(n−1)/n ≤ C(n, γ)

22(k+2)

22(k+1)

(
V (2 r, tk)− V (2 r, tk+1)

)
rn−2 ,

so that

(N + 1)V (2 r, tN+1)
2(n−1)/n ≤

N∑
k=0

V (2 r, tk+1)
2(n−1)/n

≤ C(n, γ) rn−2
N∑
k=0

(
V (2 r, tk)− V (2 r, tk+1)

)
≤ C(n, γ) rn−2 V (2 r, t0) ≤ C(n, γ) r2n−2 ,

that is (V (2 r, tN+1)

rn

)2(n−1)/n
≤ C(n, γ)

N
,

as desired.

Step two: We now complete the proof of the theorem. By Theorem 3.2, for every t ∈ R
we have

M(r) ≤ t+ C(n, γ)
(I(2 r, t)

rn

)1/2 (V (2 r, t)

rn

)ε/2
(4.5)

where ε = ε(n) > 0 is as in (3.6). The goal is showing M(r) ≤M(4 r)− δ ω(4 r), so we set
as in step one

t0 = µ(4r) , tk =M(4r)− ω(4r)

2k+1
, t∞ =M(4r) ,

and apply (4.6) with tk for some k to be chosen: we thus find

M(r) ≤M(4 r)− ω(4r)

2k+1
+ C(n, γ)

(I(2 r, tk)
rn

)1/2 (V (2 r, tk)

rn

)ε/2
. (4.6)

Clearly

I(2 r, tk)

rn
=

1

rn

ˆ
B2r

(u− tk)
2
+ ≤ C(n) (M(4 r)− tk)

2 ≤ C(n)
(ω(4 r)

2k+1

)2
.

while the uniform decay estimate (4.3) gives

V (2 r, tk)

rn
≤ C(n, γ)

kn/2(n−1)

so that (4.6) implies

M(r) ≤M(4 r)− ω(4r)

2k+1
+

C∗(n, γ)

kε n/4(n−1)

ω(4 r)

2k+1
. (4.7)

Let k0 be such that
C∗(n, γ)

k
ε n/4(n−1)
0

≤ 1

2
.

Then (4.7) gives

M(r) ≤M(4 r)− ω(4r)

2k0+1
,

and the theorem is proved with δ = 2−(k0+1). �
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Proof of De Giorgi’s theorem, Theorem 3.1. If u ∈ DGγ(Ω), then Theorem 3.2 can be
applied to both u and −u to prove that u ∈ L∞

loc(Ω). In particular, we can define Mx(r),
mx(r), ωx(r) and µx(r) for every Br(x) ⊂⊂ Ω. Fix Br = Br(x) with B4r ⊂⊂ Ω, and set
M =Mx, m = mx, etc. Then, either

V (2 r, µ(4 r))

|B2 r|
≤ 1

2
,

or
V (2 r, µ(4 r))

|B2 r|
>

1

2
.

In the first case,M(r) ≤M(4 r)−δ ω(4 r) with δ = δ(n, γ) as in De Giorgi’s decay theorem;
in the second case, we can apply De Giorgi’s decay theorem to −u and findm(r) ≥ m(4 r)+
δ ω(4 r). In both cases we have proved that ω(r) ≤ (1 − δ)ω(4 r) whenever B4 r ⊂⊂ Ω.

This implies that u ∈ C0,α
loc (Ω) with α = log(1− δ)/ log(1/4) = log4(1/(1− δ)). �
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